

Working with the Digital Assessment Environment

FaSMEd Meeting 2

- Evaluation Percents and Fractions
- Ahead with the DAE
 - Metric system
 - Graphs
- Next steps

- Responses of students after completing the tests?
- When you checked the results, what did you notice first ?
- What went well? What was difficult?

- What did you learn from the results?
- What have you done with it , or are you going to do with it?
 - Test B?
 - Questions and ideas for use?

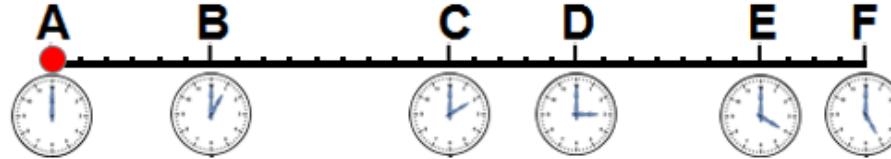
- What does this consist of?
 - Not: measuring as an activity
 - But how the various units of measurement relate: the metric system.
- What are your teaching experiences with the metric system ?

	Is equal to:
1 km	1000 m
1 m	10 dm
1 dm	10 cm
1 m	100 cm
1 cm	10 mm

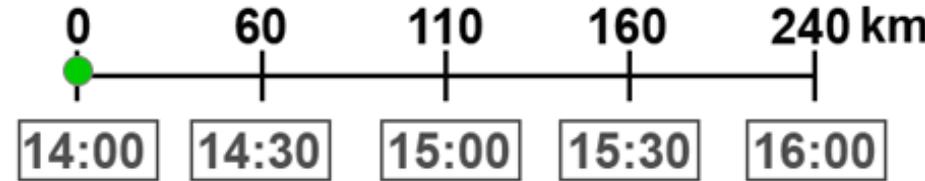
- $\text{km} \rightarrow \text{m} \rightarrow \text{dm} \rightarrow \text{cm} \rightarrow \text{mm}$
- $\text{l} \rightarrow \text{dl}, \text{cl}, \text{ml}$
- $\text{kg} \rightarrow \text{g} \rightarrow \text{mg}$

Dutch reference level 1F: primarily from larger units to smaller units (in meaningful situations)

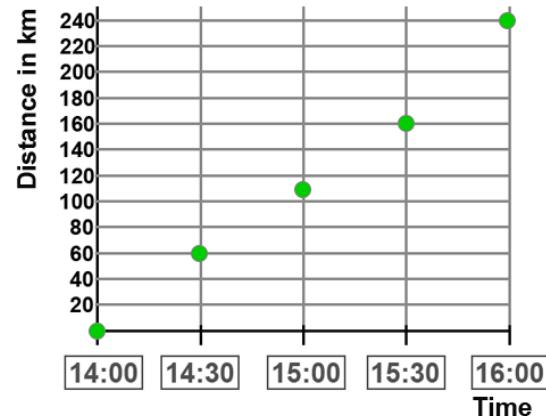
Dutch reference level 1S: also from smaller units to larger units, and working with decimal numbers (also without a situation)


- $1 \text{ dm}^3 = 1 \text{ litre} = 1000 \text{ ml}$
(for reference level 1F)
- $1 \text{ m}^3 = 1000 \text{ litres}$
(for reference level 1S)

Core competency	Test A	Toets B
Converting measures of weight: g, kg	<p>Problem 1</p> <p>Click what is more: 5 kg or 7000 grams. How many grams is the difference? ... grams</p>	<p>Problem 1</p> <p>A shopping bag weighs 3 kg. 40 grams are added. How many grams does the bag weigh now? ... grams</p>
Converting measures of length: cm, dm, m, km	<p>Problem 2</p> <p>The height of a crate is 60 cm. A pile of five of these crates is ... meters high.</p>	<p>Problem 2</p> <p>A window is 2 m and 4 dm high. How many centimeters is the height of the window? ... cm</p>
	<p>Problem 3</p> <p>A sports field is 50 meters wide and 150 meters long. How many kilometers ran the students after 10 laps? ... km</p>	<p>Problem 3</p> <p>A sports field is 40 meters wide and 60 meters long. After how many laps did the students run exactly 4 km? After ... laps</p>
Converting measures of area: m ² , cm ²	<p>Problem 4</p> <p>Click what is bigger: a terrace of 10 m² or a terrace of 800 dm². How many dm² is the difference? ... dm²</p>	<p>Problem 4</p> <p>How many m² of tiles are needed to make a terrace of 50 dm wide and 60 dm long? ... m²</p>
Converting measures of volume: dm ³ , cm ³ , liter, dl	<p>Problem 5</p> <p>Click which tank can hold the most: a tank of 30 liters or a tank of 28 dm³. How many deciliters is the difference? ... deciliters</p>	<p>Problem 5</p> <p>Click which tank can hold the most: a tank of 4000 milliliters or a tank of 10 dm³. How many deciliters is the difference? ... dl</p>
Converting liter, dl, cl, and ml	<p>Problem 6</p> <p>One glass can 200 ml of lemonade. There are 3 liters of lemonade. How many glasses can you fill? ... glasses</p>	<p>Problem 6</p> <p>A bottle can hold 150 milliliters of perfume. A container contains 6 liters of perfume. How many bottles can be filled with this? ... bottles</p>


- Common topic in FaSME^d project: time-distance graphs.
- Not a regular component of the mathematics curriculum in primary education (in the Netherlands).
- Test show what students already know and are capable of without instruction.

- Conclusions possible about speed
- Speed is a rate, a special ratio between two related measurements (so many km in so many hrs) expressed as one number.
- For example, 100 km/h


- From visualisation:

- To scheme:

- To graph:

Core competency	Test A	Test B
Pictorially represented data: Drawing conclusions about speed for various distances that have been covered in the same amount of time	Problem 1 (see manual)	Problem 1 (see manual)
Schematically presented time-distance schedule: Drawing conclusions about speed for fixed equal distances that have been covered in varying amounts of time	Problem 2 (see manual)	Problem 2 (see manual)
Schematically presented time-distance schedule: Drawing conclusions about the speed for varying distances that have been covered in fixed time slots	Problem 3 (see manual)	Problem 3 (see manual)
Completing a time-distance graph based on a schematically presented time-distance schedule in which the covered distances and needed time intervals are given	Problem 4 (see manual)	Problem 4 (see manual)
Reading data from a time-distance graph and making the corresponding schematic time-distance schedule	Problem 5 (see manual)	Problem 5 (see manual)
Using the verbal description of travel times and covered distances for making the corresponding time-distance graph	Problem 6 (see manual)	Problem 6 (see manual)
Drawing conclusions about speed based on a time-distance graph	Problem 7 (see manual)	Problem 7 (see manual)

- Complete tests metric system and graphs
- Last meeting

- Evaluation Metric system
- Evaluation Graphs
- General evaluation
- Information about further use of the DAE
- How to proceed?

Week number	Date	1st FaSME ^d meeting
...	...	Completing Test A percents
...	...	Completing Test A fractions
...	...	2nd FaSME^d meeting
...	...	Completing Test A metric system
...	...	Completing Test A graphs
...	...	3rd FaSME^d meeting

- Questions/problems progress?

Send an e-mail to

<your e-mail address>

- Questions/problems DAE?

Send an e-mail to

M.J.Abelson@uu.nl (Mieke Abels)

This PowerPoint was designed by
Ilona Friso-van den Bos, Mieke Abels & Marja van den Heuvel-Panhuisen
Freudenthal Group, Faculty of Social and Behavioural Sciences
Freudenthal Institute, Faculty of Science
Utrecht University